Cholla: A GPU-Native
Hydrodynamics Code for
_eadership Computing

Evan Schneider (Princeton)
Brant Robertson (UCSC)

OLCF Users Group Meeting, May 15, 2018
Project ID AST 125

Why did we need a new
hydrodynamics code”?

Simulating Galactic Winds |s
Computationally Challenging

~10 kpc (galactic disk)

——

. «—— ~1 Kkpc (winds generated)
- g
S

~100 kpc (CGM)

The scales involved in galactic
wind evolution range from ~1-10 pc
(cooling radius of supernova
bubbles) to ~100 kpc (virial
radius of halo).

Computer Architectures Have

Changed
Serial Approach Parallel Approach
[Siart |

\\ L

Stop

Computer Architectures Have
Changed

CPU

Optimized for Serial Tasks Optimized for Parallel Tasks

S0, the goal was to build a new code,
that could:

® achieve h

the si

mulati

Igh resolutior

throughout

on volume (r

Jn simulations

with large numbers of cells)

e take full advantage of new computing
architectures
e address the limitations of the previous
generation of hydrodynamics codes.

Cholla;:

Computational
nhydrodynamics
on

|

architectures

Cholla are also a group
of cactus species that
grows in the Sonoran

Desert of southern
Arizona.

- A GPU-native, massively-

parallel, grid-based
hydrodynamics code (publicly
available at github.com/cholla-
hydro/cholla)

- Incorporates state-of-the-art

hydrodynamics algorithms
(unsplit integrators, 3™ order
spatial reconstruction, precise
Riemann solvers, dual energy
formulation, etc.)

- Also includes optically-thin

cooling and photoionization
heating based on precomputed
rate tables, and static gravity.

Schneider & Robertson (2015, 2017)

A (brief) introductio
methc

|
N to finite-volume
NAS

A (brief) introduction to finite-volume
methods

u = [p, pu, pv, pw, E]' a vector of conserved quantities

/

U

A (brief) introduction to finite-volume
methods

u = [p, pu, pv, pw, E]' a vector of conserved quantities
vtz oty u(x,y, 2
— ’ d dyd
i / / 1 / ATAYyAz rEYEE

_ We want to go from u at
Uu time t,to uattime t+ At

>

A (brief) introduction to finite-volume
methods

u = [p, pu, pv, pw, E]' a vector of conserved quantities

t—|—At ¢ | AV 3 P
N bt 7,k Wi gk Axr (i+ 5,5,k i— 2.,k
© At
THi,j,/ﬁL% | A (Gi,j+%,k — Gi,j—%,k)
| ¥ — H. .
Gz i+ Uk I AZ (Hzajak_l_% Z,j,k—%)
F 1 : 5J ol
Z‘|’§,],k§ —b
O SSSSS — >

Conserved Variable Update in C

// loop over each cell, updating density, momentum, and energy
for (I=0; i<nx; 1++) {
density[i] += dt/dx * (F.d[i-1] - F.d[i]);
momentum_x[i] += dt/dx * (F.mx]i-1] - F.mx{[i]);
momentum_y[i] += dt/dx * (F.my[i-1] - F.my[i]);
(
(

momentum_z[i] += dt/dx * (F.mz[i-1] - F.mz][i]);
Energyli] +=dt/dx * (F.E[i-1] - F.E]i]);

Conserved Variable Update in Cuda

void Update_Conserved_Variables(double *dev_conserved, double *dev_F,
Int nX, double dx, double dt)
{

// get a global thread ID

int id = threadldx.x + blockldx.x * blockDim.x;

// update the conserved variable array
if (id <nx){
dev_conserved[0*nx + id] += dt/dx * (dev_F[0*nx + id-1] - dev_F[0*nx + id])
dev_conserved[1*nx + id] +=dt/dx * (dev_F[1*nx + id-1] - dev_F[1*nx + id])
dev_conserved[2*nx + Id] += dt/dx * (dev_F[2*nx + id-1] - dev_F[2*nx + id]);
dev_conserved[3*nx + id] += dt/dx * (dev_F[3*nx + id-1] - dev_F[3*nx + id])
dev_conserved[4*nx + id] += dt/dx * (dev_F[4*nx + id-1] - dev_F[4*nx + id])

}
}

Conserved Variable Update in Cuda

// copy the conserved variable array onto the GPU
cudaMemcpy(dev_conserved, host_conserved, 5*n_cells*sizeof(double),
cudaMemcpyHostToDevice);

// call cuda kernel
Update_Conserved_Variables<<<dimGrid,dimBlock>>>(dev_conserved,
dev_F, nx, dx, dt);

// copy the conserved variable array back to the CPU
cudaMemcpy(host_conserved, dev_conserved, 5*n_cells*sizeof(double),
cudaMemcpyDevice ToHost);

What does Cholla do”

Models the equations of hydrodynamics on a static mesh in
1D, 2D, or 3D using either the 6-solve Corner Transport

Upwind algorithm (Colella, 1990; Gardiner & Stone, 2008) or
the Van Leer integration algorithm (Stone & Gardiner, 2009).

Apply initial conditions
and boundary conditions
to the grid.

What does Cholla do”

Reconstruct interface values
using cell averages.

i - 1 i i+ 1
Choose either piecewise

constant, piecewise linear, or

piecewise parabolic
reconstruction. e

i-1 i i+ 1
Piecewise linear and piecewise

parabolic reconstruction can be

done in either the primitive
variables or the characteristic

variables. . . .
-1 | 1+ 1

What does Cholla do”

%4
Calculate fluxes across cell L W

interfaces using reconstructed
interface values.

Density

Density

Pressure

1.0

0.8}
0.6
0.4¢
0.2¢

0.0

What does Cholla do”

vvvvvvvvvvvvvvvvvvv

AAAAAAAAAAAAAAAAAAA

0.0 02 04 06 0.8 1.0

1.0

0.8}
0.6
0.4¢
0.2

0.0

Position

00 0.2 04 06 0.8 1.0

Position

Velocity

Internal Energy

1.2
1.0}

0.8}
0.6
0.4}
0.2}

vvvvvvvvvvvvvvvv

0.0¢
0.2 .

AAAAAAAAAAAAAAAA

0.0 0

2 04 06 08 1.0
Position

W o«
o

A
o

o
o

1.5

00 0

2 04 06 08 1.0
Position

t

Density

Wr

What's the GPU advantage?

Grid-based hydro codes are eminently
parallelizable - each cell needs data from
only a few nearby cells to reconstruct
interface values, calculate fluxes across

interfaces, and update conserved quantities.

Hydro solvers are computationally
expensive. Many unsplit algorithms
require 6 Riemann problems per cell, per
timestep (in 3D).

With GPUs, we massively parallelize the
calculation across many cores, allowing us
to speed up computation by an order of
magnitude as compared to similarly
intensive CPU codes.

- GPU functions execute

How does It work”

each thread processes data for one cell

as CUDA kernels on a threads
grld of thread blocks - {0...n} Shared Memory
each cell in the T~
simulation Is mapped T Block [Block][Block | Block
to a single thread. grid of 00 || 10 || 20 |} 30
thread

- Cholla is designed to blocks | |Block||Block | Block || Block

minimize memory 01 f| 11]| 21 || 31

transfers between the

CPU and GPU, CPU |+
reducing computational
overhead.

GPU Global Memory

How does It work”

Serial parts of code
execute on the CPU

Parallel portions
execute on the GPU

An aside: using texture mapping
to accelerate cooling calculations.

— P
_’-5’—'—/ B
e

What Is texture mapping”

- w4 3
- : e ——

. P —E o R
e T ARG i 2| b WD R
- - - .1 ‘, -~ -

Skyrim, Bethesda Game Studios

Many astrophysical cooling calculations
rely on multidimensional table lookups to
calculate radiative cooling / heating rates.

-18 L solar, log(nn) = -3
solar, log(ny) =0

-20 | solar, log(nn) =3

Iog(/\/nﬁ) [ergcm=3s1]

Texture mapping speeds up the
cooling implementation in Cholla

1. Copy 2D cooling tables to texture memory on the GPU
2. Calculate density and temperature of gas

3. "Fetch” cooling and heating rates from the texture -
bilinear interpolation comes for free!

__device__ double Cloudy cool(double n, double T)
{

double lambda = 0.0; // cooling rate, erg s”-1 cm”"3
double H = 0.0; // heating rate, erg s*-1 cm”3
double cool = 0.0; // cooling per unit volume, erg / s / cm”"3

// fetch cooling and heating rates
Llambda = tex2D<float>(coolTexObj, T, n);
H = tex2D<float>(heatTex0bj, T, n);

// cooling rate per unit volume
cool = n*¥n¥(lambda - H);

return cool;

How does It compare to the

CPU version?

Loops/

DA (GPU

Threads GSL (CPU) | CU |)
102 0.006 ms 0.023 ms
104 0.31 ms 0.023 ms
106 30 ms 0.023 ms

Cholla Test Suite

o Suite of 1, 2, & 3D hydro tests

* 1D: advection problem, Sod shock tube, strong shock
problem, Shu & Osher shock tube, strong rarefaction
problem, interacting blast waves, etc.

e 2D: advection problem, Sod shock problem
(diagonal), implosion test, Kelvin Helmholtz instability,
Rayleigh-Taylor instability, Noh's strong shock

e 3D: advection problem, Sod shock problem, Sedov-
Taylor blast wave, Noh's strong shock

2D Implosion (Liska & Wendroft, 2003)

Example test
calculation:
Implosion test
(10242)

55,804,166,144
cell updates

symmetric about
y=X to roundoftf
error

40 million cell updates/second on a single NVIDIA P100 GPU

3D Noh Strong Shock

107

_ YNNI IR
1D version, Noh .}}‘mﬁlﬂl'éﬂ// / /"/’é;‘%/?/'
(1987) XV SR 9 Sy

0.8H,,1% / Y/ //./// /
HELE N AV %

| 2

d=1, P=0, IVl = -1, [tfllf(;/;/ ///%//f//f

. . '

reflecting inner 0-614 M// ’/’/{/// // 7z bsd
boundaries I}Jfl {,/ f/ V 7, /‘;/f//;f;«g;:
e -~
0.4-11 J//'// ,////// ./////,;/é -~

Formally infinite Y 4 ///: , e
shock reflecting 0.21_1/‘/ APEEs 54 har o0
from origin. W g L e T g
'//// "a// - e — *_‘—

o O
(@) Qo
Pressure

—
N

O
N

3D Noh Strong Shock

Strong, grid-
aligned shocks

lead to Carbuncle 0.8]

instability.

The H correction
(Sanders,1998)

uses information
about transverse

wave speeds to fix 0-2]

the problem.

0.0
0.0

1.0

0.6/

0.4]

2 l A A

2 | A A A | 1

With H correction

2563

0.2

0.4 0.6 0.8

1.0

Cholla takes advantage of the world’s
most powerful supercomputers.

Titan: Largest Open Science Supercomputer in the US

Flagship accelerated computing system | 200-cabinet Cray XK7 supercomputer |
18,688 nodes (AMD 16-core Opteron + NVIDIA Tesla K20 GPU) |

CPUs/GPUs working together — GPU accelerates | 20+ Petaflops

Cholla Achieves Excellent Scaling

Strong Scaling test, 5123 cells Weak Scaling test, ~322° cells / GPU
S Va L P S PO P T a2
Total runtime ® 510—0~o—-o—-o~o——o—-o—.——o——o—.——o—-i
60 - CTU (GPU hydro) . : j
= MPI boundaries
o 50 |
e et
2 40 iz |/
@ © 10 7 .
2 30 - E : :
o ® .
-]
kS
c%)' 20 i Total Runtime
CTU (GPU hydro)
10 | MPI boundaries
60 70 100 101 102 103 104
GPUs

Schneider & Robertson (2015)

Graphics Processors as a Scientific Tool

Advantages Challenges

e Optimized for fast e Limited memory on GPU
execution of parallel tasks ¢ Need lots of computation

* Blocked architecture to make up for data
easily transitions to new transfer and memory
hardware models atency

e Specialized hardware e Blocked architecture not
functions are FAST optimal for some problems

» Offloading computation to
GPU leaves CPU free to
perform other tasks

* Energy efficient!

2D Kelvin Helmholtz test 3840 x 2160 Resolution

Thanks!

